Quick Start

My first program

If you have successfully installed desolver following the installation guide here you will be able to test it with the following script.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import desolver as de
import desolver.backend as D

@de.rhs_prettifier(
    equ_repr="[vx, -k*x/m]",
    md_repr=r"""
$$
\frac{dx}{dt} = \begin{bmatrix}
   0            & 1 \\
   -\frac{k}{m} & 0
   \end{bmatrix} \cdot \begin{bmatrix}x \\ v_x\end{bmatrix}
$$
"""
)
def rhs(t, state, k, m, **kwargs):
    return D.array([[0.0, 1.0], [-k/m,  0.0]])@state

y_init = D.array([1., 0.])

a = de.OdeSystem(rhs, y0=y_init, dense_output=True, t=(0, 2*D.pi), dt=0.01, rtol=1e-9, atol=1e-9, constants=dict(k=1.0, m=1.0))

print(a)

a.integrate()

print(a)

print("If the integration was successful and correct, a[0].y and a[-1].y should be near identical.")
print("a[0].y  = {}".format(a[0].y))
print("a[-1].y = {}".format(a[-1].y))

print("Maximum difference from initial state after one oscillation cycle: {}".format(D.max(D.abs(a[0].y-a[-1].y))))

Place it into a getting_started.py text file and run it with

python getting_started.py

This script shows the numerical integration of a Hooke’s Law spring (harmonic oscillator) for a single cycle.

We recommend the use of Jupyter or ipython to enjoy desolver the most.